论文部分内容阅读
针对信号处理领域噪声消除的实际问题,提出了一种基于模糊推理的自适应神经网络控制方法。通过自适应神经模糊推理系统(ANFIS)对非线性系统的结构和参数进行辨识与自学习,采用混合学习算法,对前向参数和结论参数分别辨识,在提高精度的同时可加快训练收敛的速度,使控制系统具有良好动静态性和鲁棒性,实现了消除通信系统中噪声的目标,最后对基于ANFIS的噪声消除系统进行了建模和仿真,并与自适应神经网络滤波方法的结果对比,其结果证明了该方法的有效性。