论文部分内容阅读
揭开“黑洞”神秘面纱的那一刻,中国科学院上海天文台研究员、ETH国际合作成员路如森激动得有些哽咽。“当你想象中的东西第一次真實地出现在眼前时,真有一种美梦成真的感觉。”他在发布会后如是说。

智利的阿塔卡马大型毫米波阵。
仰望星空,遥远的“黑洞”从未像今天这样触手可及——世界各国科学家联手“捕获”黑洞影像,并以一种“天涯共此时”的奇妙方式联袂公布,爱因斯坦广义相对论最后一块缺失的拼图被找到了!
从观测到发布,全球200多位科学家历时两年才“冲洗”出这张“高糊”的照片,人们不禁要问,这张“兴师动众”的照片究竟是怎么拍出来的?已经参与此项目近8年的路如森,作为亲历者,向《新民周刊》揭开了“黑洞”成像的不凡历程。
一百多年前,爱因斯坦提出广义相对论,将时间和空间结合为一个四维的时空,并提出引力可视为时空的扭曲。这一理论做出了不少重要预言,其中之一便是:当一个物体的质量不断塌缩,就能隐蔽在事件视界(event horizon) 之内——在这一黑洞的“势力范围”内,引力强大到连光都无法逃脱。
天文学家普遍相信黑洞确实存在于宇宙之中,并根据质量将宇宙中的黑洞分为恒星级质量黑洞(几十倍至上百倍太阳质量)、超大质量黑洞(几百万倍太阳质量以上)和中等质量黑洞(介于两者之间)三类。
然而直到上世纪60年代,科学家对黑洞都还只能是“说说而已”。毕竟登山家们勇攀高峰的原因是“山就在那里”,可是,天文学家们根本看不到黑洞,他们又怎么能确定“黑洞就在那里”呢?
黑洞自身不发光,难以直接探测,而且黑洞距离地球非常遥远,以往的天文观测设备根本看不到黑洞。科学家们只能够“曲线救国”,采用一些间接方式来证明黑洞的存在——比如周围恒星运动、吸积盘、喷流乃至引力波等等。
在某些时候,恒星级黑洞(从3个太阳质量到100个太阳质量大小)会将恒星的气体撕扯到它自己身边,产生一个围绕黑洞旋转的气体盘,即吸积盘。当吸积气体过多,一部分气体在掉入黑洞视界面之前,在磁场的作用下被沿转动方向抛射出去,形成喷流。
吸积盘和喷流两种现象都因气体摩擦而产生了明亮的光与大量辐射,所以很容易被科学家探测到,黑洞的藏身之处也就暴露了。
不过,理论很丰满,现实很骨感。
2019年4月10日,中科院上海天文台研究员路如森在EHT上海发布会上介绍最新发布的人类首张黑洞照片。
以我们的银河系为例,根据理论推算,银河系中应该存在着上千万个恒星量级的黑洞,可到目前为止,我们只确认了20多个黑洞的存在,此外还有四五十个黑洞候选体。
要最终真正确认一个天体是否为黑洞,我们还需要做出更多测量与计算。要探测一个从几十万个太阳质量到几十亿甚至上百亿个太阳质量的超大质量黑洞,挑战就更大了。
所以即使在探测到引力波、从而权威性地证明黑洞存在的今天,人类还是没有直接看到能够揭秘极端条件下时空秘密的那个“洞”——“黑洞事件视界”。
路如森在接受《新民周刊》说,这或许正是黑洞本身的迷人之处所造成的——黑洞的致密程度让人难以想象!如果把地球压缩成一个黑洞,它的大小和一个汤圆差不多;而一个位于距离地球1kpc(约3262光年)处,10倍于太阳质量的恒星级黑洞,其事件视界的角直径大小只有0.4纳角秒。这比哈勃望远镜的分辨率的亿分之一还要小,任何现有的天文观测手段都没有这样的分辨本领!
不过,在没能一睹黑洞真容的岁月里,科学家们还是通过计算了解到了黑洞的“样貌”。
上世纪70年代,科学家们计算出了黑洞的图像。90年代后期,Heino Falcke等人针对银河系中心黑洞的情况做了详细计算,并引入了黑洞阴影的说法。他们同时指出,该黑洞阴影若是“镶嵌”在周围明亮的、光学薄(即对某一观测波长透明)的热气体中,就可以被(亚)毫米波甚长基线干涉测量技术(Very Long Baseline Interferometry,VLBI)“看到”。这一说法,为科学家们日后联网望远镜观测打开了一扇窗。
科学家们通过吸积盘和喷流现象来证明黑洞的存在。
早在2017年进行全球联网观测之前,全球很多科学家已经为此努力了十多年的时间。2006年,“事件视界望远镜”启动并记录下了第一组天文数据,当时,有三座望远镜使用VLBI技术进行连线观测。
随后,科学家们通过对银河系中心黑洞和M87黑洞的观测,确实在亚毫米波段探测到了黑洞边缘处辐射的结构。
“这给了我们很大的信心。”路如森对《新民周刊》表示,在此之前,尽管科学家们已经掌握了很多证明黑洞确实存在的电磁观测数据,但是这些证据都是间接的。
2016年探测到的双黑洞合并产生的引力波,更是让人们愈加相信黑洞的存在。但引力波是类似于声波的“听”的方式,而电磁方式是一种“看”的方式,对于更倾向于“眼见为实”“有图有真相”的人类而言,以直观的电磁方式探测到黑洞还是非常让人期待的。

仰望星空,遥远的“黑洞”从未像今天这样触手可及——世界各国科学家联手“捕获”黑洞影像,并以一种“天涯共此时”的奇妙方式联袂公布,爱因斯坦广义相对论最后一块缺失的拼图被找到了!
从观测到发布,全球200多位科学家历时两年才“冲洗”出这张“高糊”的照片,人们不禁要问,这张“兴师动众”的照片究竟是怎么拍出来的?已经参与此项目近8年的路如森,作为亲历者,向《新民周刊》揭开了“黑洞”成像的不凡历程。
看不见的黑洞怎么“看”?
一百多年前,爱因斯坦提出广义相对论,将时间和空间结合为一个四维的时空,并提出引力可视为时空的扭曲。这一理论做出了不少重要预言,其中之一便是:当一个物体的质量不断塌缩,就能隐蔽在事件视界(event horizon) 之内——在这一黑洞的“势力范围”内,引力强大到连光都无法逃脱。
天文学家普遍相信黑洞确实存在于宇宙之中,并根据质量将宇宙中的黑洞分为恒星级质量黑洞(几十倍至上百倍太阳质量)、超大质量黑洞(几百万倍太阳质量以上)和中等质量黑洞(介于两者之间)三类。
然而直到上世纪60年代,科学家对黑洞都还只能是“说说而已”。毕竟登山家们勇攀高峰的原因是“山就在那里”,可是,天文学家们根本看不到黑洞,他们又怎么能确定“黑洞就在那里”呢?
黑洞自身不发光,难以直接探测,而且黑洞距离地球非常遥远,以往的天文观测设备根本看不到黑洞。科学家们只能够“曲线救国”,采用一些间接方式来证明黑洞的存在——比如周围恒星运动、吸积盘、喷流乃至引力波等等。
在某些时候,恒星级黑洞(从3个太阳质量到100个太阳质量大小)会将恒星的气体撕扯到它自己身边,产生一个围绕黑洞旋转的气体盘,即吸积盘。当吸积气体过多,一部分气体在掉入黑洞视界面之前,在磁场的作用下被沿转动方向抛射出去,形成喷流。
吸积盘和喷流两种现象都因气体摩擦而产生了明亮的光与大量辐射,所以很容易被科学家探测到,黑洞的藏身之处也就暴露了。
不过,理论很丰满,现实很骨感。

以我们的银河系为例,根据理论推算,银河系中应该存在着上千万个恒星量级的黑洞,可到目前为止,我们只确认了20多个黑洞的存在,此外还有四五十个黑洞候选体。
要最终真正确认一个天体是否为黑洞,我们还需要做出更多测量与计算。要探测一个从几十万个太阳质量到几十亿甚至上百亿个太阳质量的超大质量黑洞,挑战就更大了。
所以即使在探测到引力波、从而权威性地证明黑洞存在的今天,人类还是没有直接看到能够揭秘极端条件下时空秘密的那个“洞”——“黑洞事件视界”。
路如森在接受《新民周刊》说,这或许正是黑洞本身的迷人之处所造成的——黑洞的致密程度让人难以想象!如果把地球压缩成一个黑洞,它的大小和一个汤圆差不多;而一个位于距离地球1kpc(约3262光年)处,10倍于太阳质量的恒星级黑洞,其事件视界的角直径大小只有0.4纳角秒。这比哈勃望远镜的分辨率的亿分之一还要小,任何现有的天文观测手段都没有这样的分辨本领!
不过,在没能一睹黑洞真容的岁月里,科学家们还是通过计算了解到了黑洞的“样貌”。
上世纪70年代,科学家们计算出了黑洞的图像。90年代后期,Heino Falcke等人针对银河系中心黑洞的情况做了详细计算,并引入了黑洞阴影的说法。他们同时指出,该黑洞阴影若是“镶嵌”在周围明亮的、光学薄(即对某一观测波长透明)的热气体中,就可以被(亚)毫米波甚长基线干涉测量技术(Very Long Baseline Interferometry,VLBI)“看到”。这一说法,为科学家们日后联网望远镜观测打开了一扇窗。
全球望远镜怎么连起来?

早在2017年进行全球联网观测之前,全球很多科学家已经为此努力了十多年的时间。2006年,“事件视界望远镜”启动并记录下了第一组天文数据,当时,有三座望远镜使用VLBI技术进行连线观测。
随后,科学家们通过对银河系中心黑洞和M87黑洞的观测,确实在亚毫米波段探测到了黑洞边缘处辐射的结构。
“这给了我们很大的信心。”路如森对《新民周刊》表示,在此之前,尽管科学家们已经掌握了很多证明黑洞确实存在的电磁观测数据,但是这些证据都是间接的。
2016年探测到的双黑洞合并产生的引力波,更是让人们愈加相信黑洞的存在。但引力波是类似于声波的“听”的方式,而电磁方式是一种“看”的方式,对于更倾向于“眼见为实”“有图有真相”的人类而言,以直观的电磁方式探测到黑洞还是非常让人期待的。