论文部分内容阅读
Ultrafine grained AA6063-SiC_(np) nanocomposites with 1, 5 and 10 vol.% SiC_(np) have been fabricated by a novel powder metallurgy process. This process combines high energy ball milling of a mixture of 6063 alloy granules made from machining chips and Si C nanoparticles and thermomechanical powder consolidation by spark plasma sintering and hot extrusion. The microstructure and tensile mechanical properties of the samples were investigated in detail. Increasing the Si C nanoparticle content from 1 to 10 vol.%,the yield strength and ultimate tensile strength increased from 296 and 343 MPa to 545 and 603 MPa respectively, and the elongation to fracture decreased from 10.0%, to 2.3%. As expected, a higher Si C nanoparticle content generates a stronger inhibiting effect to grain growth during the thermomechanical powder consolidation process. Analysis of the contributions of various strengthening mechanisms shows that a higher Si C nanoparticle content leads to a higher contribution from nanoparticle strengthening, but grain boundary strengthening still makes the largest contribution to the strength of the nanocomposite.When the Si C nanoparticle content increased to 10 vol.%, the failure of the nanocomposite was initiated at weakly-bonded interparticle boundaries(IPBs), indicating that with a high flow stress during tensile deformation, the failure of the material is more sensitive to the presence of weakly-bonded IPBs.
Ultrafine grained AA6063-SiC np nanocomposites with 1, 5 and 10 vol.% SiC_ (np) have been fabricated by a novel powder metallurgy process. This process combines high energy ball milling of a mixture of 6063 alloy granules made from machining chips and Si C nanoparticles and thermomechanical powder consolidation by spark plasma sintering and hot extrusion. The microstructure and tensile mechanical properties of the samples were investigated in detail. Increasing the Si C nanoparticle content from 1 to 10 vol.%, the yield strength and ultimate tensile Strength increased from 296 and 343 MPa to 545 and 603 MPa respectively, and the elongation to fracture decreased from 10.0% to 2.3%. As expected, a higher Si C nanoparticle content generates a stronger inhibiting effect to grain growth during the thermomechanical powder consolidation process. Analysis of the contributions of various strengthening mechanisms shows that a higher Si C nanoparticle content leads to a higher contribution from nanoparticle strengthening, but grain boundary strengthening still makes the largest contribution to the strength of the nanocomposite. Whilst the Si C nanoparticle content increased to 10 vol.%, the failure of the nanocomposite was initiated at weakly-bonded interparticle boundaries (IPBs) that with a high flow stress during tensile deformation, the failure of the material is more sensitive to the presence of weakly-bonded IPBs.