Activation of c-Jun N-terminal kinase 1/2 regulated by nitric oxide is associated with neuronal surv

来源 :中华医学杂志(英文版) | 被引量 : 0次 | 上传用户:ling401
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Background C-Jun N-terminal kinase (JNK) signaling pathway plays a critical role in cerebral ischemia.Although the mechanistic basis for this activation of JNK1/2 is uncertain,oxidative stress may play a role.The purpose of this study was to investigate whether the activation of JNK1/2 is associated with the production of endogenous nitric oxide (NO).Methods Ischemia and reperfusion (I/R) was induced by cerebral four-vessel occlusion.Sprague-Dawley (SD) rats were divided into 6 groups:sham group,I/R group,neuronal nitric oxide synthase (nNOS) inhibitor (7-nitroindazole,7-NI)given group,inducible nitric oxide synthase (iNOS) inhibitor (2-amino-5,6-dihydro-methylthiazine,AMT) given group,sodium chloride control group,and 1% dimethyl sulfoxide (DMSO) control group.The levels of protein expression and phospho-JNK1/2 were detected by West blotting and the survival hippocampus neurons in CA1 zone were observed by cresyl violet staining.Results The study illustrated two peaks of JNK1/2 activation occurred at 30 minutes and 3 days during reperfusion.7-NI inhibited JNK1/2 activation during the early reperfusion,whereas AMT preferably attenuated JNK1/2 activation during the later reperfusion.Administration of 7-NI and AMT can decrease I/R-induced neuronal loss in hippocampal CA1 region.Conclusion JNK1/2 activation is associated with endogenous NO in response to ischemic insult.
其他文献
细胞过度凋亡参与了缺血再灌注损伤(Ischimia reperfusion injury,IRI)的发生。我国传统中药丹参可在细胞、分子、基因水平调控IRI时细胞凋亡的发生,从而对IRI具有良好的防治
期刊
Background Platelet (PLF) clumping occurring in pseudothrombocytopenia (PTCP) can result in inaccurate PLT.Automated platelet clump count (APCC) is a quantitati
Background It has been suggested that the ratio of mutant and wild type mitochondrial DNA may be related to its clinical phenotype.In this study,we developed a
原始生命向细胞进化所获得的重要形态特征之一,是生命物质外面出现了一层膜性结构,即细胞膜。细胞膜位于细胞表面,厚度通常为7~8nm,由脂类和蛋白质组成。对细胞表面形态的常规
期刊