论文部分内容阅读
提出了分组Karhunen-Leove变换(KLT)和整数小波变换(IWT)的高光谱图像数据压缩方法,并采用整数小波变换技术和Set Partitioning in Hierarchical Trees(SPIHT)压缩编码,实现了对分组Karhun-Loeve变换后的数据压缩。该压缩编码方法与现有压缩方法相比,既保留了Karhun-Loeve变换压缩性能和整数小波变换高压缩比的特点,也宜于实时传输。实验结果表明,分组Karhun-Loeve变换/整数小波变换/SPIHT在相同压缩比下,峰值信噪比比Karhun-Loeve变换/小波变换/WSFCVQ、Karhun-Loeve变换/小波变换/改进的对块零树编码压缩和Karhun-Loeve变换/WT/FSVQ分别提高了6 dB,9 dB和8 dB,运算时间减少一半,整体压缩性能有了较大的提高。
This paper proposes a method for compressing hyperspectral image data by grouping Karhunen-Leove transform (KLT) and integer wavelet transform (IWT). By using integer wavelet transform and Set Partitioning in Hierarchical Trees (SPIHT) compression coding, Transformed data compression. Compared with the existing compression methods, the compression coding method not only retains the characteristics of Karhun-Loeve transform compression and integer wavelet transform high compression ratio, but also is suitable for real-time transmission. The experimental results show that the peak signal-to-noise ratio of the grouping Karhun-Loeve transform / integer wavelet transform / SPIHT under the same compression ratio is better than Karhun-Loeve transform / WSFCVQ, Karhun-Loeve transform / The coding compression and Karhun-Loeve transform / WT / FSVQ are improved by 6 dB, 9 dB and 8 dB respectively, the operation time is reduced by half, and the overall compression performance is greatly improved.