改进的模拟退火算法求解规则可满足性问题

来源 :现代电子技术 | 被引量 : 0次 | 上传用户:kyy06
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
对于随机k-SAT问题,限定每个变元出现的次数恰好出现d次,形成随机规则(k,d)-SAT问题,目前国内外对该问题的相关研究较少,且研究随机规则(k,d)-SAT问题比研究k-SAT问题更为具体.文中给出一种随机规则(k,d)-SAT问题的生成实例模型——RRIG(N,k,d)模型,并用改进的模拟退火算法SARSAT求解规则随机规则(k,d)-SAT问题.将变元出现次数d加入到扰动策略中,利用变元出现次数和子句间约束关系中的启发信息对候选解中的赋值选择性改动,加快算法收敛至较优解的速度;同时,模拟退火算法中的Metropolis接受准则和改进后的退火策略保证了算法能够有效跳出局部最优解,最后使用RRIG(N,k,d)模型生成不同参数的测试实例,并与其他相关算法进行比较,结果表明SARSAT算法能有效解决规则可满足问题.
其他文献
超声医学图像灰度集中、对比度较差,针对传统分割方法效果不理想的问题,提出统计聚类与马尔科夫随机场(MRF)无向图模型的医学图像分割算法.医学图像的统计结构反映了图像空间区域的聚类特征,选定其灰度统计特性的局部峰值对应的灰度值作为K均值算法的初始聚类中心能较好地定位各区域,应用基于统计信息的聚类算法对医学图像进行初始分割;在此基础上构建各区域的无向图模型,建模二阶邻域系统描述像素标记间联系,医学图像的整体特征场采用高斯混合模型表征,并采用高斯模型建模标记相同的灰度特征场;最后,求解其局部能量最小的标记场,实
针对网络流量异常检测目前存在的数据维度大、冗余数据较多、准确率较低等问题,提出一种基于层次聚类和自编码器并结合多层极限学习机的网络流量异常检测模型.首先考虑数据特征之间的相关性,根据数据特征之间的相似性距离对特征维度进行层次聚类划分,将相关性较高的特征划分到同一特征子集中;然后利用自动编码器对每个特征子集进行约简,消除冗余信息降低检测数据计算量;最后以多层极限学习机作为分类器,利用约简后的特征数据进行网络流量异常检测建模.实验结果显示,文中模型在UNSW-NB15数据集上准确率达到了0.992,精确率达到
压缩感知技术在信息隐藏领域广泛应用,传统算法是将整个载体图像进行稀疏变换后测量,没有对载体图像进行适当的选择,文中通过压缩感知技术处理载体图像不同区域的测量值,针对测量值利用聚类算法选出背景图像块,调整采样率重新测量背景图像块,获取新的测量值,然后进行秘密信息写入和载体图像还原,实验结果表明该方法提高了载密图像的透明性和隐藏效率,具备一定的鲁棒性和抗提取性.
为了较好地预测可再生能源的发电输出,对模型效率进行分析,在物联网系统的基础上,提出一种基于人工神经网络(ANN)与自适应网络模糊推理系统(ANFIS)的混合预测模型.首先,利用压电传感器、体热电转换器和太阳能板用于可再生能源发电,并将其连接到能量存储电路,以产出电能;然后,使用ESP8266模块连接数据和云服务器,利用ANN和ANFIS混合模型处理从可再生能源中生成的所有电能,将3个不同模块采集得到的数据集用于模型的训练和测试;最后,利用采集到的数据开发4个模型,通过均方根误差(RMSE)和相关系数(R2
语音情感识别是自动语音识别的重要研究方向,提取最能表征语音情感的特征并构建具有较强鲁棒性和泛化性的声学模型是语音情感识别的重要研究内容.基于此,构建了基于注意机制、跳跃连接、掩蔽操作等关键技术的语音情感识别声学模型,称为具有掩蔽操作的基于注意机制的跳跃卷积双向循环神经网络.该模型有8个隐层,依次是2个全连接层、卷积层、跳跃层、掩蔽层、Bi-LSTM层、注意层和池化层.其中,卷积层提取语音情感空间特征;Bi-LSTM层提取语音情感时间序列特征;跳跃层主要解决梯度问题;掩蔽层使数据中为0的值不参与计算,降低了
目标在跟踪过程中由于运动速度过快、跟踪精度不够、出现遮挡而经常会导致跟踪失败.针对这一问题,文中在目标跟踪算法KCF的框架下提出一种基于时空上下文分层卷积的相关滤波算法.其中选用训练好的VGG-19网络提取多层深度特征送入岭回归中训练模型,并对多层深度特征的响应值采用自适应分配权重的方式得出最终的置信度,同时依据上一帧预测位置选取与目标同等宽高的上下左右四块区域,增加在目标搜索区域的四周用来约束目标因速度过快超出搜索范围的情况,然后针对目标遮挡提出一种新型遮挡判断机制用以判断目标是否被遮挡,并配合峰值分布
电动汽车大规模接入使得电力系统的电能质量下降,电动汽车的充电需求预测是解决电动汽车接入电网问题的基础,电动汽车驾驶行为的不确定性导致对其充电需求的预测精度不足,文中提出一种基于马尔科夫链蒙特卡洛(MCMC)模拟的电动汽车充电需求分析方法.首先用出行链描述电动汽车的出行行为,出行链包括时间特征量和空间特征量,利用马尔科夫链模拟出行链的相关特征量,从而实现模拟电动汽车出行行为的目的;然后利用蒙特卡洛法对电动汽车的充电需求进行计算,分析电动汽车驾驶过程中和充电后荷电状态的变化;最后计算出电动汽车的充电需求.算例
针对军事指挥控制保障领域各种技术数据资料挖掘处理和融合应用效率低下的问题,提出利用知识抽取技术获取关键知识及其相互关系,形成相应知识体系,以实现数据的高效利用.在知识抽取系统框架的研究与设计过程中,首先介绍了知识抽取的相关理论知识,如知识图谱、命名实体识别、关系抽取等技术;其次分析了军事领域知识抽取中命名实体识别和关系抽取的研究现状;最后设计了指挥控制保障领域知识抽取系统的总体框架和模块,包括本体建模、语料标注、命名实体识别和关系抽取等模块.首次对指挥控制保障领域的知识抽取进行研究,在系统设计过程中充分考
X-Plane内置的数据采集系统以及基于其“DATA”协议的二次开发,可以提供包括飞行器经度、纬度、平均海拔高度等在内的通用数据,但无法输出诸如仪表着陆系统(ILS)偏移、陆基增强系统(GBAS)偏移等专业性很强的非通用数据.基于X-Plane的“RREF”和“DREF”数据交互协议,利用Python开发了飞行数据交互与分析系统,除通用数据外,该系统还可以根据需要实时采集并存储X-Plane中专业性很强的非通用数据,并能够对采集数据进行分析和回放.模拟飞行数据验证表明,设计的系统能以规定的精度采集所需飞行
由于固定时长的红绿灯控制已经远远满足不了现代道路交通需求,因此提出一种基于非对称轮询模型完全服务策略的智能交通灯控制系统,用于提升路口通行效率.采用马尔可夫链与概率母函数方法进行建模分析,首次推导出完全服务策略非对称轮询模型并用于交通控制,进行仿真实验验证数学模型并根据该模型性能指标优化配时策略.针对不同的系统负载情况提出多种配时模式以适应不同交通路况,通过视频检测获取车辆到达率,应用FPGA调用MOS器件进行模块化电路系统设计,根据实时到达率情况选择配时模式计算出绿灯时间进行动态配时.在QuartusⅡ