论文部分内容阅读
The split Hopkinson pressure bar (SHPB) testing with diameter 40 mm was used to investigate the dynamic mechanical properties of engineered cementitious composites (ECCs) with different fly ash content. The basic properties including deformation, energy absorption capacity, strain-stress relationship and failure patterns were discussed. The ECCs showed strain-rate dependency and kept better plastic flow during impact process compared with reactive powder concrete (RPC) and concrete, but the critical compressive strength was lower than that of RPC and concrete. The bridging effect of PVA fiber and addition of fly ash can significantly improve the deformation and energy absorption capacities of ECCs. With the increase of fly ash content in ECCs, the static and dynamic compressive strength lowered and the dynamic increase factor enhanced. Therefore, to meet different engineering needs, the content of fly ash can be an important index to control the static and dynamic mechanical properties of ECCs.
The split Hopkinson pressure bar (SHPB) testing with diameter 40 mm was used to investigate the dynamic mechanical properties of engineered cementitious composites (ECCs) with different fly ash content. The basic properties including deformation, energy absorption capacity, strain-stress relationship and failure patterns were discussed. The ECCs showed strain-rate dependency and kept better plastic flow during impact process compared with reactive powder concrete (RPC) and concrete, but the critical compressive strength was lower than that of RPC and concrete. The bridging effect of PVA fiber and addition of fly ash can significantly improve the deformation and energy absorption capacities of ECCs. With the increase of fly ash content in ECCs, the static and dynamic compressive strength lowered and the dynamic increase factor enhanced. content of fly ash can be an important index to control the static and dynamic mechanical properties of ECCs.