论文部分内容阅读
在原始相对梯度算子的基础上,提出一种新的相对梯度算子,并将它与二维主成分分析(2DPCA)或者二维Fisher线性判别分析(2DFLD)相结合,形成一种基于改进相对梯度算子的人脸识别算法。在AR库和Yale_B库上的实验表明,基于改进相对梯度算子的人脸识别算法对人脸图像的光照、表情等变化均具有较好的鲁棒性,识别准确率明显高于只用2DPCA或2DFLD进行特征抽取的人脸识别方法,以及基于原始相对梯度算子的人脸识别算法。同时采用三种不同大小的窗口分别进行实验,实验结果证明,当窗口大小为3×3时,识别效果