深度强化学习的攻防与安全性分析综述

来源 :自动化学报 | 被引量 : 0次 | 上传用户:guanxing1
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
深度强化学习是人工智能领域新兴技术之一,它将深度学习强大的特征提取能力与强化学习的决策能力相结合,实现从感知输入到决策输出的端到端框架,具有较强的学习能力且应用广泛.然而,已有研究表明深度强化学习存在安全漏洞,容易受到对抗样本攻击.为提高深度强化学习的鲁棒性、实现系统的安全应用,本文针对已有的研究工作,较全面地综述了深度强化学习方法、对抗攻击、防御方法与安全性分析,并总结深度强化学习安全领域存在的开放问题以及未来发展的趋势,旨在为从事相关安全研究与工程应用提供基础.
其他文献
基于移动机器人的拣货系统(Robotic mobile fulfillment systems,RMFS)作为一种新型物至人的拣货系统,相比人工拣货系统和AS/RS拣货系统(下文统称传统拣货系统)具有更高的拣货效率、更好的系统可扩展性和柔性.为全面了解RMFS的运行模式及其优化方向,本文首先回顾了RMFS的工作流程及优化理论框架,然后对RMFS的货位指派、订单分批、任务分配、路径规划以及建模方法等问题进行了文献回顾和总结,并指出了RMFS与传统拣货系统在拣货过程方面的异同及当前研究的不足.最后,讨论了RM
虽然深度神经网络(Deep neural networks,DNNs)在许多任务上取得了显著的效果,但是由于其可解释性(In-terpretability)较差,通常被当做“黑盒”模型.本文针对图像分类任务,利用对抗样本(Adversarial examples)从模型失败的角度检验深度神经网络内部的特征表示.通过分析,发现深度神经网络学习到的特征表示与人类所理解的语义概念之间存在着不一致性.这使得理解和解释深度神经网络内部的特征变得十分困难.为了实现可解释的深度神经网络,使其中的神经元具有更加明确的语义