论文部分内容阅读
摘 要:为简化Daubechies双正交小波因数的求解,以紧支集Daubechies正交小波中尺度关系的Fourier变换余弦形式为基础,提出1种当双尺度因数为偶对称时,推导Daubechies双正交小波对偶尺度方程因数的方法, 并给出构造数值实例.此方法直观、简明.
关键词:正交小波;双尺度方程;Daubechies双正交小波
中图分类号:O241文献标志码:A
A short-cut method of constructing Daubechies biorthonormal
wavelet with even symmetry double scale parameter
LI Yan
(College of Arts & Science, Shanghai Maritime Univ., Shanghai 200135, China)
Abstract: In order to simplify a process of getting parameters of Daubechies biorthonormal wavelet, according to the Fourier cosine transform of scale equation of Daubechies biorthonormal wavelet, an algorithm is proposed when the Daubechies biorthonormal wavelet has even symmetry double scale parameters. Some examples are given. The algorithm is simple and clear.
Key words:orthonormal wavelet; double scale equation; Daubechies biorthonormal wavelet
0 引 言
小波分析是在Fourier分析的基础上发展起来的,它在时—频局部化方面具有很强的灵活性,已广泛应用于信号处理、图像处理、模式识别和语音识别等领域.
多分辨分析(Multi-Resolution Analysis, MRA)是构造小波的统一框架[1],设(x)∈L2(R)为MRA的{Vj}尺度函数,则有(x)=hn(2x-n),其因数{hn}在小波构造方面起着关键作用,在应用中仅需知道{hn}就可进行函数的小波分解和回复快速算法. DAUBECHIES[2]曾给出因数{hn}的推导过程,但该过程较为烦琐复杂. 本文以紧支集Daubechies正交小波因数的推导过程为基础,给出Daubechies双正交小波因数的1种简捷推导方法, 简化求解这种因数的过程 .
注:本文中所涉及到的图表、注解、公式等内容请以PDF格式阅读原文。
关键词:正交小波;双尺度方程;Daubechies双正交小波
中图分类号:O241文献标志码:A
A short-cut method of constructing Daubechies biorthonormal
wavelet with even symmetry double scale parameter
LI Yan
(College of Arts & Science, Shanghai Maritime Univ., Shanghai 200135, China)
Abstract: In order to simplify a process of getting parameters of Daubechies biorthonormal wavelet, according to the Fourier cosine transform of scale equation of Daubechies biorthonormal wavelet, an algorithm is proposed when the Daubechies biorthonormal wavelet has even symmetry double scale parameters. Some examples are given. The algorithm is simple and clear.
Key words:orthonormal wavelet; double scale equation; Daubechies biorthonormal wavelet
0 引 言
小波分析是在Fourier分析的基础上发展起来的,它在时—频局部化方面具有很强的灵活性,已广泛应用于信号处理、图像处理、模式识别和语音识别等领域.
多分辨分析(Multi-Resolution Analysis, MRA)是构造小波的统一框架[1],设(x)∈L2(R)为MRA的{Vj}尺度函数,则有(x)=hn(2x-n),其因数{hn}在小波构造方面起着关键作用,在应用中仅需知道{hn}就可进行函数的小波分解和回复快速算法. DAUBECHIES[2]曾给出因数{hn}的推导过程,但该过程较为烦琐复杂. 本文以紧支集Daubechies正交小波因数的推导过程为基础,给出Daubechies双正交小波因数的1种简捷推导方法, 简化求解这种因数的过程 .
注:本文中所涉及到的图表、注解、公式等内容请以PDF格式阅读原文。