论文部分内容阅读
针对传统混合高斯模型使用固定学习速率所带来的问题,提出了一种改进的运动目标检测算法。该算法采用自适应的学习速率调整策略,在背景建模初期,采用较大的学习速率加快初始背景的建模,使得模型能更快地适应背景的变化;背景形成以后,根据目标运动的快慢动态调整学习速率,从而能够及时更新背景,消除运动目标的残留和拖影;最后利用基于HSV颜色空间的阴影检测算法消除运动阴影。实验结果表明,改进算法优于传统混合高斯模型,可以更准确地检测出运动目标,更好地消除阴影,并具有较好的自适应性和稳健性。