论文部分内容阅读
运用能量方法证明了如下非线性Schr(o)dinger方程组Cauchy问题{iut=△u+|v|2u,x∈Rn,t>0,iut=△v+|u|2v,x∈Rn,t>0,u(x,0)=ψ(x),v(x,0)=ψ(x)存在有限时间T,使得当t→T-时|| gradu(t)|| L2(Rn)+|| gradv(t)|| L2(Rn)=+∞.