在线评论的静态多模态情感分析

来源 :应用科学学报 | 被引量 : 0次 | 上传用户:wp76155900
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
提出了一种基于Pre-LN Transformer的静态多模态情感分类模型.该模型首先利用Pre-LN Transformer结构中的编码器提取评论文本中的语义特征,其中编码器的多头自注意力机制允许模型在不同的子空间内学到相关情感信息.然后根据ResNet提取评论的图像特征,在特征水平融合的基础上通过视觉方面注意力机制来指导文本的情感分类,实现在线评论的静态多模态情感分析.最后在Yelp数据集上执行情感分类的实验结果表明:所提出的模型在准确率上相比于BiGRU-mVGG、Trans-mVGG模型分别提高了1.34%、1.10%,验证了该方法的有效性和可行性.
其他文献
潮间带湿地是滨海湿地的重要组成部分,具有维持生物多样性、促进碳汇等重要生态功能.及时、准确地掌握潮间带湿地现状是实现潮间带湿地可持续管理目标的基础.先前的潮间带湿地分类研究依赖于训练样本、人工设定阈值或后处理等,本研究基于GEE (Google Earth Engine)平台开发一种自动、快速、高精度的潮间带湿地分类方法.该方法首先构建高质量密集时序Sentinel-2影像堆栈;然后,分析不同潮间带湿地的遥感特征,基于最大光谱指数合成算法(MSIC)和大津算法(Otsu)建立多层自动决策树分类模型.应用该
潮间带湿地具有重要的生态和经济价值,但受到全球变化影响,发生大面积退化甚至丧失.掌握潮间带湿地的时空分布特征,对海岸带资源的科学管理具有重要意义.由于受到多云多雨天气和潮汐动态淹没的影响,单时相遥感数据难以获取完整的潮间带湿地信息.因此,本研究开发了一种基于时序遥感指数的潮间带湿地分类算法,并以福建省亚热带海岸带为例,基于Google Earth Engine (GEE)云平台,利用2017年-2019年Landsat 8时序影像数据,提取潮间带光滩、高潮滩植被和低潮滩植被3种典型湿地类型,分类结果总体精