论文部分内容阅读
针对现有行人跟踪算法较少考虑场景运动模式信息的问题,建立一种面向有向场景运动模式的在线学习模型以描述区域行人的共有运动特性,并以此提出了一种新型的粒子滤波行人跟踪算法.通过对行人运动特性的选择性在线统计,探索在非高密度行人跟踪问题中场景模式信息和运动历史信息的运用方式.模型由一个表征行人运动状态相空间局域运动特性的二阶直方图矩阵来描述,并根据每个跟踪单元的加权投票实施更新.通过修正粒子转移后似然概率分布,该算法能够加速粒子向真实的后验分布收敛.通过对两个不同特点的公共数据集视频中的行人进行跟踪实验并与标准