论文部分内容阅读
为了提高推荐系统为用户推荐新产品的准确率,挖掘出每位顾客的隐藏喜好以及每个产品的性能十分关键。基于用户反馈技术经常被用于发现产品的潜在特性和用户维度,本文提出了一种将用户评分中的潜在因子和评论中的潜在主题相结合的推荐模型。该模型通过对评论文本进行分析从而实现更精确的评分预测,特别适用于对新产品和新用户的评分预测。通过在公开数据集上的验证实验,证明了该模型较传统推荐系统在性能上有显著提升。