论文部分内容阅读
由于光学遥感穿透性差,不能穿透林冠层识别林下植被,基于单一光学遥感提取的植被覆盖度,难以反映林下植被信息,从而无法为土壤侵蚀评价提供有效植被覆盖因子。针对此问题,本文以白洋淀–大清河流域为研究对象,结合实测数据,探究不同光子点分类下光子计数ICESat-2/ATLAS植被覆盖度采样的能力,并实现了研究区内星地协同植被覆盖度采样。在此基础上,联合Sentinel-2和Sentinel-1以及DEM等多源数据,基于随机森林回归模型方法实现植被覆盖度反演,并与传统常用的NDVI像元二分法提取结果进行对比。结果表明:相比于传统的NDVI像元二分法提取的反演结果,利用本研究中构建的随机森林回归模型估算的植被覆盖度精度更高,一定程度上可以对茂密森林的林下植被进行监测,避免了光学遥感存在的林下植被信号缺失的问题。在0.05、0.1和0.15不同的植被覆盖度误差容忍范围内,精度分别提升–4.1%、5.3%和9.4%,分别达到55.6%、71.1%和94.3%。