【摘 要】
:
自动文本摘要技术是一种能从海量文本中获取重要信息的方法,它可以缓解大数据时代信息过载的问题.传统基于编码-解码自动摘要模型生成的摘要易出现句内重复、语义无关等现象,
【机 构】
:
华南师范大学 计算机学院,广州,510631华南师范大学 软件学院,广东 佛山,528225;
论文部分内容阅读
自动文本摘要技术是一种能从海量文本中获取重要信息的方法,它可以缓解大数据时代信息过载的问题.传统基于编码-解码自动摘要模型生成的摘要易出现句内重复、语义无关等现象,不利于读者理解文本的核心思想.受人工摘要书写方式的启发,即先理解文本局部信息,再从全局层面归纳信息、书写摘要,提出一种基于卷积自注意力编码过滤的自动摘要模型(CSAG).模型由编码器、卷积自注意力门控单元、解码器组成,结合卷积神经网络可以提取局部特征,多端自注意力机制可以学习长期依赖关系,模型可以根据上下文的局部和全局特征,从不同角度和不同层面提取文本潜在信息,确保模型生成正确流畅的摘要.然后通过策略梯度强化学习可直接利用不可微的度量指标ROUGE对模型进行优化,避免推理过程中出现曝光偏差问题.在Gigaword数据集上的多组对比实验结果表明,该文提出的模型在自动摘要任务上具有一定的优势.
其他文献
伴随着城市化进程的不断加快,城市形象塑造逐渐发展成为了城市建设的重要内容,但我国城市形象塑造缺乏独特性,国内特色城市少之甚少.在文化资本的影响下,饮食文化成为了塑造
为了明确高吸附性机制砂石粉在防水砂浆中应用的技术可行性,采用片麻岩机制砂及其石粉制备防水砂浆,研究了石粉部分替代粉煤灰后,对其和易性、强度、体积稳定性的影响.结果表
EM(Expectation Maximization)算法是含有隐变量(latent variable)的概率参数模型最大似然估计、极大后验概率估计最有效的算法,但很容易进入局部最优现象,对此提出基于半监
为了促进协作系统中用户的合作行为,激励机制得到了广泛的使用.然而,现有的激励机制往往存在无条件合作策略占优互惠策略的现象,进而抑制了合作的涌现.为了解决这一问题,本文
针对烟花算法收敛速度慢和求解精度不高,论文提出了一种改进烟花算法——带柯西变异的自学习改进烟花算法.改进算法用全局搜索能力更强的柯西变异算子替代高斯变异算子,增大
在自然语言处理领域,句子表示方法能捕捉文本的不同信息,如卷积神经网络捕捉短语信息,循环神经网络捕捉时序信息等.自我注意力机制能够描述任意词对之间的重要程度,但是缺少
针对粒子群算法(Particle Swarm Optimization,PSO)容易陷入局部最优、收敛速度过慢、精度低等问题,提出一种新的变异策略,对全局最优粒子进行逐维的重心反向学习变异.逐维变
视频码率自适应是提高视频服务质量的一种有效方法.现有视频码率自适应算法大多都试图将一套相对固定的模型规则应用于所有用户,无法确保所有用户都拥有良好的QoE.针对上述问
具有间隙约束条件模式匹配问题是序列模式挖掘问题的基础与核心.无重叠模式匹配是其中的一种方法,当前研究是在间隙为正的精确模式匹配,为了进一步增加匹配的灵活性,本文探索