论文部分内容阅读
影响最大化旨在从给定的社会网络中寻找出一组影响力最大的子集.现有工作大都在假设实体点(个人或博客等)影响关系已知的情况下,关注于分析单个实体点的影响力.然而在一些实际场景中,人们往往更关注区域或人群等这类团体的组合影响力,如户外广告、电视营销、疫情防控等.研究了影响力团体的选择问题:(1)基于团体的关联发现,建立了团体传播模型GIC(group independent cascade);(2)根据GIC模型,给出了贪心算法CGIM(cascade group influence maximization)