论文部分内容阅读
微博作为最大的社会化媒体产品,拥有海量的用户和信息资源。微博推荐是微博个性化服务的重要方面,是解决信息过载问题的有效工具。考虑到微博数据海量性的特点,针对传统串行推荐算法对大数据处理效率低的问题,采用MapReduce模型,提出和设计一种基于关联规则挖掘算法Apriori的微博推荐并行算法,并在Hadoop平台实现。实验表明,提出的微博推荐并行算法具有较好的加速比和较高的运行效率,证明了该微博推荐并行算法在大数据处理中的高效性。