论文部分内容阅读
针对单层稀疏编码结构对图像特征学习能力的局限性问题,提出了一个基于图像块稀疏表示的深层架构,即多层融合局部性和非负性的Laplacian稀疏编码算法(MLLSC)。对每个图像平均区域划分并进行尺度不变特征变换(SIFT)特征提取,在稀疏编码阶段,在Laplacian稀疏编码的优化函数中添加局部性和非负性,在第一层和第二层分别进行字典学习和稀疏编码,分别得到图像块级、图像级的稀疏表示,为了去除冗余特征,在进行第二层稀疏编码之前进行主成分分析(PCA)降维,最后采用多类线性支持向量机进行分类。在四个标准