论文部分内容阅读
合成了稀土(钬,Ho)-氨基酸(甘氨酸,C_2H_5O_2N)二元配合物Ho(NO_3)_3(C_2H_5O_2N)_4·H_2O,并且通过化学分析、元素分析和红外(IR)光谱对配合物进行了表征.用高精度全自动绝热量热仪,测定了该配合物在80-390 K温度区间的定压摩尔热容(C_(p,m)).利用实验测定的热容数据,采用最小二乘法,将热容曲线上热容峰以外的两段平滑区的摩尔热容对折合温度进行拟合,建立了热容随折合温度变化的多项式方程.根据热容与焓、熵的热力学关系,计算出了配合物在80-390 K温度区间内,每隔5 K,相对于298.15 K的摩尔热力学函数(H_(T,m)-H_(298.15,m))和(S_(T,m)-S_(298.15,m)).通过热容曲线分析,计算出了350 K附近转变过程的焓变(△_(trs)H_m)和熵变(△_(trs)S_m).用差示扫描量热法(DSC)测定了配合物的热稳定性.
The complex Ho (NO_3) _3 (C_2H_5O_2N) _4 · H_2O was synthesized and characterized by chemical analysis, elemental analysis and infrared (IR) spectroscopy The molar constant heat capacity (C_ (p, m)) of the complex was measured by high precision automatic adiabatic calorimeter in the temperature range of 80-390 K. Using the experimental data of heat capacity, the least square method , Fitting the molar heat capacities of the two smoothing zones except the heat capacity peak on the heat capacity curve to the fitting temperature and establishing a polynomial equation with the change of heat capacity with the fitting temperature.Based on the thermodynamic relationship between heat capacity and enthalpy and entropy The molar thermodynamic functions (H_ (T, m) -H_ (298.15, m)) and (S_ (T, m) S_ (298.15, m)). The enthalpy change (Δ_ (trs) H_m) and entropy change (Δ_ (trs) S_m) of the transformation around 350 K were calculated by the heat capacity curve analysis. Thermal stability (DSC) was used to determine the thermal stability of the complex.