论文部分内容阅读
针对视频中人脸检索问题,提出一种基于奇异值分解和改进PCA相结合的视频中单样本人脸检索方法,其中通过融合局部均值和标准差的图像增强处理来实现PCA算法的改进,从而克服光照对目标的影响。通过AdaBoost人脸检测算法对人脸图像和视频进行人脸检测;通过奇异值分解增加训练样本,在原样本和新样本的基础上采用改进的PCA人脸识别算法提取待检测人脸和视频中的人脸代数特征;采用最近邻分类器进行特征匹配,判断视频中检测出的人脸是否为要检索的目标人脸。实验结果表明,该方法在简单背景的视频环境下可以较准确地检索出目标人脸。