论文部分内容阅读
基于Takens理论对混沌时间序列进行相空间重构,对小数据量法进行如下改进:利用C-C算法计算嵌入维和延迟时间;以功率对频率加权并采用求平均的方法计算平均周期,使小数据量法更加完善。使用改进前、后的小数据量法分别仿真计算Lorenz系统混沌时间序列的Lyapunov指数并预测混沌时间序列,并计算实测局域网流量时间序列的最大Lyapunov指数并预测局域网流量时间序列。仿真及实验结果均表明,采用改进型小数据量法进行流量预测,精度更高、速度更快、预测点数更多。