论文部分内容阅读
虚假数据注入攻击(FDIA)作为新型的电网攻击手段,严重威胁智能电网的安全运行。爆炸式增长的数据给集中式的FDIA检测方法带来了巨大的挑战。基于此,提出了一种基于边缘计算的分布式检测方法。将系统拆分为多个子系统,且在子系统中设置边缘节点检测器进行数据的收集、检测。结合深度学习的方法,构建了CNN-LSTM模型检测器,提取数据特征,并将模型的训练过程放置在中心节点上,实现高效、低时延的FDIA检测。最后在IEEE 14节点和IEEE39节点测试系统中,设定不同攻击强度,对所提边缘检测方法进行验证。结果表明,