论文部分内容阅读
提出了一种融合多层特征SENet和多尺度宽残差的高光谱图像地物分类的方法。实验选取Indian Pines和Pavia University为研究对象,结果表明,SEInception-Resnet-MSWideResnet (SEIR-MSWR)网络结构的总体分类精度为99.33%、99.52%,Kappa系数为0.98时,分类效果最优,相较于支持向量机(Support Vector Machine,SVM)、K最近邻法(K-NearestNeighbor,KNN),宽残差网络(Wide Resn