论文部分内容阅读
针对在现有稀疏表示分类(SRC)算法中,用l1范数取代l0范数并不能得到有效的稀疏解,提出了一种将lp(0≤p<1)范数和新判别规则完美结合的人脸识别方法。首先通过迭代算法求解lp范数最小化问题,以此代替传统SRC中的l1范数来求解编码系数,得到更稀疏和有效的解。为了从稀疏编码系数中捕捉到更多的差分信息,并兼顾残差反映每一类样本的贡献,用系数和与残差之比这一新判别规则来分类测试样本。在AR人脸数据库的实验结果表明,本算法可得到更稀疏有效的解,且可在一定程度上提高识别率,尤其是在伪装情况下,有较为明显