论文部分内容阅读
本文对比分析了基于Logistic回归、决策树、随机森林、支持向量机和神经网络的个人信用风险评估模型,并在此基础上提出了采用4种机器学习算法综合筛选重要变量再建立Logistic回归模型的两阶段组合模型。应用这一模型对"人人贷"平台借款人数据进行实证研究。结果表明:该模型相较于Logistic回归模型有着更高的精确度,克服了数据维度及定性变量数量的限制,而且提高了单一机器学习算法的指标解释能力,说明基于机器学习算法的Logistic回归模型对P2P网贷平台的借款人信用风险评估有更好的适