论文部分内容阅读
本文提出一种基于丰度约束核非负矩阵分解的高光谱图像非线性解混方法.通过该方法将原始高光谱图像数据映射到高维特征空间中,使非线性数据在高维空间中变得线性可分.然后,在高维特征空间中,通过线性的非负矩阵分解进行无监督的高光谱解混.同时依据地物分布的空间特性,在丰度上添加稀疏和平滑约束.模拟和真实高光谱图像数据的实验结果表明,与其他解混方法相比,该方法考虑了地物的空间分布特性,提高了在不同的非线性混合场景下的高光谱解混精度.