论文部分内容阅读
烟雾的实时视频探测可用于早期森林火灾的预警,然而,由于烟雾具有飘动、扩散、闪烁等特性,通过实时视频提取烟雾区域具有极大挑战。本文根据人眼视觉注意力机制,将阴燃烟雾看作视频中湍流和灰色显著的区域,提出了一种基于显著性检测和SURF-VIBE模型的疑似烟雾区域提取算法。首先采用一种基于PoolNet的显著性检测方法获得烟雾显著性图谱,通过VIBE运动检测算法获得视频中运动前景,并使用SURF特征匹配算法消除相机抖动等对运动前景带来的干扰,再由计算出的运动前景构造运动能量函数,对显著性谱进行估计,最终提取