论文部分内容阅读
利用小生境粒子群算法(NPSO)的全局搜索能力,对GRNN的光滑因子进行优化,提高了广义回归神经网络(GRNN)的网络性能,建立了基于NPSO-GRNN的城市生活需水量预测模型。研究结果表明:利用该模型拟合和预测北京市1988-2012年生活需水量数据的平均相对误差绝对值分为别0.72%和0.36%,两者都比BP神经网络模型拟合预测的结果低;NPSOGRNN模型能更好的拟合北京市城市生活需水量的变化趋势,预测精度更高,泛化能力更强。