论文部分内容阅读
目的:研究使用计算机辅助分析方法针对软组织肿瘤MRI影像进行肿瘤良恶性鉴别的价值。方法:回顾性收集了在辽宁省肿瘤医院就诊的72例软组织肿瘤患者的CE-T1和T1WI双序列MRI影像数据(2017年1月至2018年1月)。通过提取和筛选MRI影像特征,建立支持向量机(SVM)、K-最邻近(KNN)和随机森林(RF)三种机器学习分类器模型对肿瘤病灶进行二分类鉴别;提出一种新型集成学习分类器模型用于将两个序列MRI信息进行融合。通过绘制受试者工作特征曲线(ROC)并计算ROC曲线下面积(AUC值)以评估模型的分