论文部分内容阅读
【摘 要】近年来,随着国内外大量高层建筑的建造,基坑深度不断加深,规模和复杂程度不断加大,基坑支护已成为高、大建筑中的一个非常大的课题,建筑基坑支护的安全性也成为施工人员十分关注的热点问题。
本文对基坑支护类型、基坑工程水效应和支护设计计算进行了分析,并对存在的问题提出了建议。
【关键词】深基坑;支护;类型;建议
建筑基坑支护设计与施工技术是一门从实践中发展起来的技术,它涉及土力学中典型的强度、稳定及变形问题,还涉及土与支护结构共同作用问题、基坑中的时空效应问题以及结构计算问题等。几十年来,随着国内外大量高层建筑的建造,基坑深度不断加深,规模和复杂程度不断加大,基坑支护已成为高、大建筑中的一个非常大的课题,建筑基坑支护的安全性也成为施工人员十分关注的热点问题。
1、基坑支护类型
1.1自立式支护
这种支护型式的优点是基坑内无支撑,便于机械化挖土和地下室工程施工,其缺点是支护桩顶水平位移较大,当坑深较大或地质条件较差时,工程造价较高。一般都用在地质条件较好的场地;若存在厚软土层,采用此支护型式的,其基坑深度一般不大于6.0m。
1.2 排桩内支撑支护
排桩大多为冲、钻孔灌注桩(桩径Ф800~1200);个别工程采用地下连续墙或预应力管桩。内支撑系统根据平面形状有角撑式、角撑对撑式、水平拱圈式等多种布置方式;水平拱圈支撑发挥混凝土抗压强度高,抗拉强度低的特点,既经济又可提供较大的施工空间。竖向大多为单道内支撑,也有两道内支撑。支撑材料有钢梁和钢筋混凝土梁两种。
1.3 桩锚支护
这种支护方式主要适用于场地土层性能较好或软土层较薄的场地。对基坑深度较大的工程,岩土锚杆的一些参数如下:与水平夹角在15°~40°之间;长在35m 以内;设计轴向抗拔力一般小于600kN;锚筋材料有钢筋或3~4 条钢铰线;大多采用二次高压注浆工艺,第二次注浆压力一般大于2MPa。
1.4 喷锚支护
喷锚或土钉墙支护是锚杆、钢丝网、喷射混凝土相结合的联合支护型式。适用于地下水位以上或经人工降水后的人工填土、粘性土和弱胶结砂土。常用在单层地下室、且淤泥较薄、地下水较少的基坑。但不适用于含水丰富的粉细砂层、砂砾卵石层,不能用于自稳能力极差的厚淤泥层,基坑深度不宜大于12m。
1.5 组合型支护
当基坑内有几种深度、或者土层分布变化较大、或者基坑各侧的环境条件有较大差别时,可因地制宜地采用不同的组合支护方式,以充分发挥各种材料及支护结构类型的优越性,降低工程造价。
2、深基坑支护施工时应注意的问题
基坑支护工程方案的实施内容主要包括支护的设计和施工工艺。基坑支护设计与施工要综合考虑工程地质与水文条件、基础类型、基坑开挖深度、降排水条件、周边环境、基坑周边荷载、施工季节、支护结构使用期限等因素。基坑支护施工控制的关键是基坑的稳定性、地面变形及地下水的控制、防止基坑隆起、管涌与流砂等险情,并要根据地质、环境因素的变化适时地调整支护方案。在进行深基坑支护的设计和施工时应注意以下几点。
2.1在城市中,对环保要求较高,选择支护体系时,要考虑到支护工程施工产生的振动,噪音、泥浆、化学浆液等对城市环境的影响。
2.2注意周边陈旧民居。施工场地周围的老旧建筑物一般存在室内墙面、平面及外立面的不同程度的开裂、渗漏等损坏现象,主要考虑深基坑施工对周围环境温度、材料收缩变形以及房屋沉降变性等的影响。
2.3高层建筑一般位于城市中心,建筑场地周围建筑物密集,地下管线较多,限制了基坑的施工,往往需要垂直开挖,而在开挖中应考虑边坡侧移和地面沉降对周围建筑物和地下设施安全构成的潜在威胁。
2.4一般情况下深基坑的施工场地比较狭小。有时工期有比较紧。所以深基坑施工时要注意综合考虑施工场地的局限性合理安排施工流程,要注意施工过程的环保工程。
3、基坑支护的设计注意事项
3.1转变传统的基坑支护的设计理念
目前,对于深基坑支护结构的设计,至今仍没找到一种精确的计算方法,多数是处于摸索和探讨阶段,国内也没有统一的支护结构设计规范。所以深基坑支护结构的设计应彻底改变传统的设计观念,逐步建立以施工监测为主导的信息反馈动态设计体系。
3.2建立变形控制的新工程设计方法
在建立新的变形控制设计法时,应着重研究支护结构变形控制的标准、空间效应转化为平面应变和地面超载的确定及其对支护结构的影响等。
3.3重视支护结构的试验研究。
正确的理论必须建立在大量试验研究的基础之上。但是,在深基坑支护结构方面,我国至今尚未进行科学系统的试验研究。而在深基坑支护工程现场施工过程却积累了大料的技术资料,却缺少科学的测试数据,无法进行抖学分析。不能上升到理论的高度,这是一个很大的遗憾。
3.4 探索新的支护结构的计算思路
深基坑支护结构正在向着综合性方向发展,即受力结构与水结构相结合、临时支护结构与永久支护结构相结合、基坑开挖方式与支护结构型式相结合。这几种结合必然使支护结构受力复杂。寻求新的计算思路,是发展深基坑支护施工技术所要求的。
4、深基坑支护设计计算
基坑支护设计必须满足安全性、经济性和可行性这三项基本要求。设计的基本原则是在满足安全与技术可行的前提下,尽量节省工程造价。在基坑支护设计中,首先应满足支护结构的强度要求,然后,根据基坑周边环境的复杂程度进行变形控制。基坑各侧环境不同,其变形控制值也应相应变化,避免由于支护结构变形过大,造成周边建(构)筑物、地下管线破坏。
4.1 岩土层计算指标的选用
基坑支护设计首先遇到的是岩土层抗剪强度c 值的选取。如何根据场地的工程地质资料,以及基坑工程特点和采用的计算理论来选用合适的抗剪强度指标是至关重要的。
不同的试验方法,得出的抗剪强度指标差别很大。目前,确定抗剪强度指标的方法主要有:①直剪试验的快剪和固结快剪,②三轴试验,③原位测试的十字板剪切试验。
4.2 土压力计算
基坑支护结构土压力计算大多以朗肯土压力和库伦土压力理论为基础。用的更多的是朗肯土压力理论。有的采用土压力三角形分布简图;有的采用梯形简图。墙或桩顶发生很小位移时,主动土压力即可发挥出来,而被动土压力充分发挥时需有大得多的位移,这往往是实际工程所不允许的;对于悬臂式和单层支撑(或单锚式)支护,开挖过程中一般都能达到主动土压力极限状态;而对多层支撑(或多层拉锚)式,其土压力比较复杂,墙或桩位移产生拱效应,从而在挖方以下的土压力减小,在支撑附近侧压力增大,此外,侧压力还与支撑是否施加预载及支撑刚度有关,故对于排桩悬臂式支护,一般采用三角形简图,但被动土压力需作一定折减,以减小排桩的水平变位;当用等值梁法计算排桩内支撑支护、排桩锚拉支护时,可选用梯形简图。对软土、冲洪积粘性土、残积粘性土等渗透性能较差的土层,采用水土合算;而对于砂层和杂填土等渗透性良好土层,采用水土分算。
5、结束语
综上所述,深基坑工程项目越来越多,基坑开挖深度也越来越深。由于基坑周边地面建筑和地下设施密集,且地质条件复杂多变,深基坑支护的难度也越来越大,造成经济损失和不良社会影响。因此,研究适用地质条件的新深基坑支护技术是必要的。
参考文献:
[1]陈祖煜.土坡稳定分析通用条分法及其改进[J].岩土工程学报,1983(4):13-29.
本文对基坑支护类型、基坑工程水效应和支护设计计算进行了分析,并对存在的问题提出了建议。
【关键词】深基坑;支护;类型;建议
建筑基坑支护设计与施工技术是一门从实践中发展起来的技术,它涉及土力学中典型的强度、稳定及变形问题,还涉及土与支护结构共同作用问题、基坑中的时空效应问题以及结构计算问题等。几十年来,随着国内外大量高层建筑的建造,基坑深度不断加深,规模和复杂程度不断加大,基坑支护已成为高、大建筑中的一个非常大的课题,建筑基坑支护的安全性也成为施工人员十分关注的热点问题。
1、基坑支护类型
1.1自立式支护
这种支护型式的优点是基坑内无支撑,便于机械化挖土和地下室工程施工,其缺点是支护桩顶水平位移较大,当坑深较大或地质条件较差时,工程造价较高。一般都用在地质条件较好的场地;若存在厚软土层,采用此支护型式的,其基坑深度一般不大于6.0m。
1.2 排桩内支撑支护
排桩大多为冲、钻孔灌注桩(桩径Ф800~1200);个别工程采用地下连续墙或预应力管桩。内支撑系统根据平面形状有角撑式、角撑对撑式、水平拱圈式等多种布置方式;水平拱圈支撑发挥混凝土抗压强度高,抗拉强度低的特点,既经济又可提供较大的施工空间。竖向大多为单道内支撑,也有两道内支撑。支撑材料有钢梁和钢筋混凝土梁两种。
1.3 桩锚支护
这种支护方式主要适用于场地土层性能较好或软土层较薄的场地。对基坑深度较大的工程,岩土锚杆的一些参数如下:与水平夹角在15°~40°之间;长在35m 以内;设计轴向抗拔力一般小于600kN;锚筋材料有钢筋或3~4 条钢铰线;大多采用二次高压注浆工艺,第二次注浆压力一般大于2MPa。
1.4 喷锚支护
喷锚或土钉墙支护是锚杆、钢丝网、喷射混凝土相结合的联合支护型式。适用于地下水位以上或经人工降水后的人工填土、粘性土和弱胶结砂土。常用在单层地下室、且淤泥较薄、地下水较少的基坑。但不适用于含水丰富的粉细砂层、砂砾卵石层,不能用于自稳能力极差的厚淤泥层,基坑深度不宜大于12m。
1.5 组合型支护
当基坑内有几种深度、或者土层分布变化较大、或者基坑各侧的环境条件有较大差别时,可因地制宜地采用不同的组合支护方式,以充分发挥各种材料及支护结构类型的优越性,降低工程造价。
2、深基坑支护施工时应注意的问题
基坑支护工程方案的实施内容主要包括支护的设计和施工工艺。基坑支护设计与施工要综合考虑工程地质与水文条件、基础类型、基坑开挖深度、降排水条件、周边环境、基坑周边荷载、施工季节、支护结构使用期限等因素。基坑支护施工控制的关键是基坑的稳定性、地面变形及地下水的控制、防止基坑隆起、管涌与流砂等险情,并要根据地质、环境因素的变化适时地调整支护方案。在进行深基坑支护的设计和施工时应注意以下几点。
2.1在城市中,对环保要求较高,选择支护体系时,要考虑到支护工程施工产生的振动,噪音、泥浆、化学浆液等对城市环境的影响。
2.2注意周边陈旧民居。施工场地周围的老旧建筑物一般存在室内墙面、平面及外立面的不同程度的开裂、渗漏等损坏现象,主要考虑深基坑施工对周围环境温度、材料收缩变形以及房屋沉降变性等的影响。
2.3高层建筑一般位于城市中心,建筑场地周围建筑物密集,地下管线较多,限制了基坑的施工,往往需要垂直开挖,而在开挖中应考虑边坡侧移和地面沉降对周围建筑物和地下设施安全构成的潜在威胁。
2.4一般情况下深基坑的施工场地比较狭小。有时工期有比较紧。所以深基坑施工时要注意综合考虑施工场地的局限性合理安排施工流程,要注意施工过程的环保工程。
3、基坑支护的设计注意事项
3.1转变传统的基坑支护的设计理念
目前,对于深基坑支护结构的设计,至今仍没找到一种精确的计算方法,多数是处于摸索和探讨阶段,国内也没有统一的支护结构设计规范。所以深基坑支护结构的设计应彻底改变传统的设计观念,逐步建立以施工监测为主导的信息反馈动态设计体系。
3.2建立变形控制的新工程设计方法
在建立新的变形控制设计法时,应着重研究支护结构变形控制的标准、空间效应转化为平面应变和地面超载的确定及其对支护结构的影响等。
3.3重视支护结构的试验研究。
正确的理论必须建立在大量试验研究的基础之上。但是,在深基坑支护结构方面,我国至今尚未进行科学系统的试验研究。而在深基坑支护工程现场施工过程却积累了大料的技术资料,却缺少科学的测试数据,无法进行抖学分析。不能上升到理论的高度,这是一个很大的遗憾。
3.4 探索新的支护结构的计算思路
深基坑支护结构正在向着综合性方向发展,即受力结构与水结构相结合、临时支护结构与永久支护结构相结合、基坑开挖方式与支护结构型式相结合。这几种结合必然使支护结构受力复杂。寻求新的计算思路,是发展深基坑支护施工技术所要求的。
4、深基坑支护设计计算
基坑支护设计必须满足安全性、经济性和可行性这三项基本要求。设计的基本原则是在满足安全与技术可行的前提下,尽量节省工程造价。在基坑支护设计中,首先应满足支护结构的强度要求,然后,根据基坑周边环境的复杂程度进行变形控制。基坑各侧环境不同,其变形控制值也应相应变化,避免由于支护结构变形过大,造成周边建(构)筑物、地下管线破坏。
4.1 岩土层计算指标的选用
基坑支护设计首先遇到的是岩土层抗剪强度c 值的选取。如何根据场地的工程地质资料,以及基坑工程特点和采用的计算理论来选用合适的抗剪强度指标是至关重要的。
不同的试验方法,得出的抗剪强度指标差别很大。目前,确定抗剪强度指标的方法主要有:①直剪试验的快剪和固结快剪,②三轴试验,③原位测试的十字板剪切试验。
4.2 土压力计算
基坑支护结构土压力计算大多以朗肯土压力和库伦土压力理论为基础。用的更多的是朗肯土压力理论。有的采用土压力三角形分布简图;有的采用梯形简图。墙或桩顶发生很小位移时,主动土压力即可发挥出来,而被动土压力充分发挥时需有大得多的位移,这往往是实际工程所不允许的;对于悬臂式和单层支撑(或单锚式)支护,开挖过程中一般都能达到主动土压力极限状态;而对多层支撑(或多层拉锚)式,其土压力比较复杂,墙或桩位移产生拱效应,从而在挖方以下的土压力减小,在支撑附近侧压力增大,此外,侧压力还与支撑是否施加预载及支撑刚度有关,故对于排桩悬臂式支护,一般采用三角形简图,但被动土压力需作一定折减,以减小排桩的水平变位;当用等值梁法计算排桩内支撑支护、排桩锚拉支护时,可选用梯形简图。对软土、冲洪积粘性土、残积粘性土等渗透性能较差的土层,采用水土合算;而对于砂层和杂填土等渗透性良好土层,采用水土分算。
5、结束语
综上所述,深基坑工程项目越来越多,基坑开挖深度也越来越深。由于基坑周边地面建筑和地下设施密集,且地质条件复杂多变,深基坑支护的难度也越来越大,造成经济损失和不良社会影响。因此,研究适用地质条件的新深基坑支护技术是必要的。
参考文献:
[1]陈祖煜.土坡稳定分析通用条分法及其改进[J].岩土工程学报,1983(4):13-29.