论文部分内容阅读
针对传统预测控制算法在解决非线性系统控制问题时,存在难以建立精确的数学模型、控制精度不高等缺点,提出一种新的非线性系统预测控制方案。以多BP神经网络作为并行预测模型,克服误差积累以及网络规模庞大的缺点;运用粒子群优化(PSO)算法完成非线性预测控制的滚动优化。仿真表明,该方案的控制效果比常规动态矩阵控制效果有所提高,该方案是可行和有效的。