论文部分内容阅读
分析了气田采出水水质及挂片试验水样对管线钢的腐蚀速率。利用BP神经网络建立了C20钢材的腐蚀速率预测模型。通过改变网络输入参数、隐层节点数对模型进行优化,发现在样本数目一定的情况下,仅通过改变网络结构难以进一步减小输出误差。采用PCA(主成分分析法),用6个主成分代替了原来大量的水质指标作为网络输入,有效地降低了网络输出的误差。结果表明,采用水质指标的主成分分析与BP神经网络可以建立较准确的C20钢腐蚀速率预测模型。