论文部分内容阅读
针对现实中同时具有不完备、模糊、混合属性值域决策系统的约简问题,建立了广义邻域粗糙集模型,提出了未知属性的辨别方法和基于属性重要度的约简算法。采用广义邻域关系度量不可分辨关系,通过邻域粒子逼近论域空间,是非对称相似关系、容差关系和模糊等价关系的广义化,可以直接处理同时含有名义型、数值型、模糊型、丢失型和遗漏型不完备属性的混合决策系统。依据分类一致性假设及广义邻域关系进行未知属性的辨别,讨论了噪声样本和邻域大小对分类精度的影响,给出了约简算法的具体实现。采用HitSHT数据和UCI数据库中2组数据进行了仿真