论文部分内容阅读
各树种在年生长季不同测期的蒸腾速率日进程曲线一般呈单峰型。蒸腾速率与环境因子的相关性大小依次为 :光照强度、气温、相对湿度和大气水势。蒸腾速率日变化一般可用具有光照因子的优化模型 (即光照型、光温型、光湿型和光温湿型 )来模拟。年生长季树种蒸腾速率 ( g· g- 1L D· h- 1)排序由大到小为 :柠条 ( 0 .92 69± 0 .2 0 89) (平均值±标准差 ,以下同 )、小叶杨 ( 0 .71 77± 0 .2 4 1 0 )、河北杨( 0 .62 56± 0 .1 60 9)和北京杨 ( 0 .60 0 7± 0 .2 749) ;净光合速率 ( mg CO2 · g- 1LD· h- 1)排序自高至低为 :柠条 ( 1 4.5949± 4.662 7)、小叶杨 ( 1 3.40 55± 2 .9994)、河北杨 ( 1 3.2 569± 4.3531 )和北京杨 ( 1 1 .6989± 2 .5884) ;蒸腾效率 ( g DM· g- 1H2 O)排序由高至低为 :北京杨 ( 1 .41 %± 0 .42 % )、河北杨 ( 1 .35%± 0 .36% )、小叶杨 ( 1 .2 6%± 0 .2 3% )和柠条 ( 1 .0 0 %± 0 .2 7% )
The daily course of transpiration rate of each tree species in different seasons of the annual growing season showed a single peak. The correlations between transpiration rate and environmental factors were as follows: light intensity, air temperature, relative humidity and atmospheric water potential. Diurnal variation of transpiration rate can generally be simulated using optimization models with illumination factors (ie light type, light temperature type, light wet type and light, temperature and humidity type). The annual growth rate of tree species transpiration rate (g · g-1L D · h-1) was descending order: Caragana korshinskii (0.92 69 ± 0.2089) (mean ± standard deviation, the same below) Populus simonii (0.71 77 ± 0.241 0), Hebei poplar (0.62 56 ± 0.160 9) and Populus davidiana (0 .607 ± 0 .2 749), net photosynthetic rate ( The results showed that: Caragana korshinskii (1 4.5949 ± 4.662 7), Populus simonii (1 3.40 55 ± 2 .9994), Hebei Yang (1 3.2 569 ± 4.3531) and Beijing Yang (1 1 .6989 ± 2 .5884); transpiration efficiency (g DM · g-1H2 O) ranked from high to low as: Beijing Yang (1.41% ± 0.42%), Hebei Yang 35% ± 0.36%), Populus simonii (1.26% ± 0.23%) and Caragana korshinskii (1.0% ± 0.27%)