The distribution and inter-annual variation of water masses on the Bering Sea shelf in summer

来源 :Acta Oceanologica Sinica | 被引量 : 0次 | 上传用户:lndlfw
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
On the basis of the CTD data obtained within the Bering Sea shelf by the Second to Sixth Chinese National Arctic Research Expedition in the summers of 2003, 2008, 2010, 2012 and 2014, the classification and interannual variation of water masses on the central Bering Sea shelf and the northern Bering Sea shelf are analyzed. The results indicate that there are both connection and difference between two regions in hydrological features. On the central Bering Sea shelf, there are mainly four types of water masses distribute orderly from the slope to the coast of Alaska: Bering Slope Current Water(BSCW), MW(Mixed Water), Bering Shelf Water(BSW) and Alaska Coastal Water(ACW). In summer, BSW can be divided into Bering Shelf Surface Water(BSW_S) and Bering Shelf Cold Water(BSW_C). On the northern Bering Sea shelf near the Bering Strait,it contains Anadyr Water(AW), BSW and ACW from west to east. But the spatial-temporal features are also remarkable in each region. On the central shelf, the BSCW is saltiest and occupies the west of 177°W, which has the highest salinity in 2014. The BSW_C is the coldest water mass and warmest in 2014; the ACW is freshest and mainly occupies the east of 170°W, which has the highest temperature and salinity in 2012. On the northern Bering Sea shelf near the Bering Strait, the AW is saltiest with temperature decreasing sharply compared with BSCW on the central shelf. In the process of moving northward to the Bering Strait, the AW demonstrates a trend of eastward expansion. The ACW is freshest but saltier than the ACW on the central shelf,which is usually located above the BSW and is saltiest in 2014. The BSW distributes between the AW and the ACW and coldest in 2012, but the cold water of the BSW_C on the central shelf, whose temperature less than 0°C, does not exist on the northern shelf. Although there are so many changes, the respond to a climate change is synchronized in the both regions, which can be divided into the warm years(2003 and 2014) and cold years(2008, 2010 and 2012). The year of 2014 may be a new beginning of warm period. On the basis of the CTD data obtained within the Bering Sea shelf by the Second to Sixth Chinese National Arctic Research Expedition in the summers of 2003, 2008, 2010, 2012 and 2014, the classification and interannual variation of water masses on the central Bering Sea The results indicate that there are both connection and difference between two regions in hydrological features. On the central Bering Sea shelf, there are mainly four types of water mass distribute orderly from the slope to the coast of Alaska: Bering Slope Current Water (BSCW), MW (Mixed Water), Bering Shelf Water (BSW) and Alaska Coastal Water (ACW). In summer, BSW can be divided into Bering Shelf Surface Water (BSW_S) and Bering Shelf Cold On the northern Bering Sea shelf near the Bering Strait, it contains Anadyr Water (AW), BSW and ACW from west to east. But on the northern Bering Sea shelf near the Bering Strait, the BSC W is saltiest and occupies the west of 177 ° W, which has the highest salinity in 2014. The BSW_C is the coldest water mass and warmest in 2014; the ACW is freshest and mainly occupies the east of 170 ° W, which has the highest temperature and salinity in 2012. On the northern Bering Sea shelf near the Bering Strait, the AW is saltiest with temperature decreasing sharply compared with BSCW on the central shelf. In the process of moving northward to the Bering Strait, the AW demonstrates a trend of The ACW is freshest but saltier than the ACW on the central shelf, which is usually located above the BSW and is saltiest in 2014. The BSW distributes between the AW and the ACW and coldest in 2012, but the cold water of the Whose there is so many changes, the respond to a climate change is synchronized in the northern shelf. Which can be divided into the warm years (2003 and 2014) and cold years (2008, 2010 and 2012). The year of 2014 may be a new beginning of warm period.
其他文献
To dates,most ship detection approaches for single-pol synthetic aperture radar(SAR) imagery try to ensure a constant false-alarm rate(CFAR).A high performance
为探究吕家坨井田地质构造格局,根据钻孔勘探资料,采用分形理论和趋势面分析方法,研究了井田7
期刊
为探究吕家坨井田地质构造格局,根据钻孔勘探资料,采用分形理论和趋势面分析方法,研究了井田7
期刊
The Regional Ocean Modeling System(ROMS) is used to study the summer circulation in the southwestern Yellow Sea(SWYS). The modeled currents show good agreement
为探究吕家坨井田地质构造格局,根据钻孔勘探资料,采用分形理论和趋势面分析方法,研究了井田7
为探究吕家坨井田地质构造格局,根据钻孔勘探资料,采用分形理论和趋势面分析方法,研究了井田7
期刊
为探究吕家坨井田地质构造格局,根据钻孔勘探资料,采用分形理论和趋势面分析方法,研究了井田7
为探究吕家坨井田地质构造格局,根据钻孔勘探资料,采用分形理论和趋势面分析方法,研究了井田7
期刊
In this paper, the interdecadal variability of upper-ocean temperature in the South China Sea(SCS) is investigated based on several objectively analyzed data se
为探究吕家坨井田地质构造格局,根据钻孔勘探资料,采用分形理论和趋势面分析方法,研究了井田7
期刊