基于注意力机制的恶意软件调用序列检测

来源 :计算机科学 | 被引量 : 0次 | 上传用户:m83692590
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
传统的机器学习方法通过构造特征来学习分类器,面对嵌入大量反检测功能的恶意软件不具有鲁棒性。攻击者通过打乱恶意软件代码或插入无关代码来逃避检测。针对互联网环境下恶意软件数目众多、混淆技术进步、人工构造特征成本高等问题,文中提出一种基于循环神经网络和注意力机制的恶意软件检测方法(G2ATT)。首先,在沙盒环境下运行软件获取其动态调用序列(API),并通过滑动窗口划分得到窗口子序列;其次,引入多示例学习和注意力机制来构建层次化特征抽取的深度神经网络,使用循环神经网络抽取API特征,结合两个注意力机制分别抽取窗口
其他文献
旅行商问题(Travelling Salesman Problem,TSP)是一种经典的组合优化问题,属于典型的NP难问题,具有重要的研究价值。文中提出了一种混沌烟花算法来求解TSP。所提算法使用最大
为了降低传统协同过滤算法的推荐成本,并解决该算法评分信息单一的问题,提出了一种基于协同过滤的三支粒推荐算法。该算法在传统协同过滤的基础上,考虑项目特征对用户评分的
为提高城市道路建设时序决策的鲁棒性,提出了城市道路建设时序决策优化的双层规划模型。模型假定出行需求在一定范围内扰动,上层规划是在有限资金的约束下寻求各建设阶段的系
为了加快蝙蝠算法的收敛速度并提高寻优精度,提出一种基于动态自适应权重和柯西变异的蝙蝠优化算法。该算法在速度公式中加入了动态自适应权重,以动态地调整自适应权重的大小
点排序识别聚类结构(Ordering Points to Identify the Clustering Structure,OPTICS)的密度聚类算法能以可视化的方式导出数据集的内在聚类结构,并且可以通过簇排序提取基本的
计算量较大的应用程序由于需要大量的能耗,因此在电池容量有限的移动设备上运行时十分受限。云计算迁移技术是保证此类应用程序在资源有限的设备上运行的主流方法。针对无线
车辆导航系统正由静态导航向动态导航过渡;通过分析静态导航系统存在的不足和动态路径导航系统的发展特点,针对大城市复杂交通状况,设计了基于FM通信的动态车辆导航系统框架;确定
针对某多型导弹测试设备计量检定工作的急需和现场开展计量工作的困难,开发了一套自动化测试程度高、可携行机动的综合计量系统;该系统采用虚拟仪器设计思想,在IEEE488.2标准的基