论文部分内容阅读
室内环境的复杂性导致了高精度的室内定位非常困难.针对这个问题,将无线传感器网络(WSN)技术应用到室内定位中.通过分析传统的基于RSSI测距定位方法和指纹定位方法,设计一种基于RSSI的非测距定位方法.该方法使用Kriging插值算法建立定位区域的RSSI向量指纹,通过基于组合的向量相似度匹配方法匹配目标RSSI向量与RSSI向量指纹能有效消除障碍物对定位的影响,并获得目标节点的位置范围.最后通过K-means聚类算法提取目标节点的实际位置.实验结果表明该方法的定位精度较高,适用于室内定位.
Due to the complexity of the indoor environment, it is very difficult to locate the indoor with high precision.For this problem, the WSN technology is applied to the indoor positioning.Through the analysis of the traditional RSSI based positioning and fingerprinting methods, This method uses Kriging interpolation algorithm to establish RSSI vector fingerprints in the localization area and matches the target RSSI vector and RSSI vector fingerprints through a combination of vector similarity matching method to effectively eliminate the impact of obstacles on the positioning , And get the location range of the target node.Finally, the actual location of the target node is extracted by K-means clustering algorithm.The experimental results show that the method has high positioning accuracy and is suitable for indoor positioning.