论文部分内容阅读
过去“公路”月刊上介绍了不少桥头楕圆锥体护坡的施工放样方法,这些都是很宝贵的经验。现在也将我个人的一点粗浅的常用方法介绍出来,供大家参考。理论根据见图1 已知:AB直线A,B两点各落在坐标X轴与Y轴上。 M点将AB线段分为AM=b(楕圆短轴),BM=a(楕圆长轴),而AB=a+b,x,y为M点之坐标位置。由是:X=acos~θ…………………………①y=bsin~θ…………………………②两式取平方:X~2=a~2cos~(2θ) y~2=b~2sin~(2θ) 移项X~2/a~2=cos~(2θ) y~2/b~2=sin~(2θ) 两式相加: X~2/a~2+y~2/b~2=cos~(2θ)+sin~(2θ) 上式与楕圆程方式(中心在坐标原点)相同,由此可知AB=a+b时M点之轨迹为一楕圆。
In the past, the “Highway” magazine introduced a lot of construction methods of bridgehead ridges and cone protection, all of which are very valuable experiences. Now I will introduce my personal common point of superficiality for your reference. The theory is based on Figure 1 known: AB line A, B two points fall on the coordinates of the X-axis and Y-axis. M points will AB segment is divided into AM = b (楕 circle short axis), BM = a (circle long axis), and AB = a + b, x, y coordinates for M points. From: X = acos ~ θ .............................. ① y = bsin ~ θ .............................. ② Two-way square: X ~ 2 = a ~ 2cos ~ (2θ) y ~ 2 = b ~ 2sin ~ (2θ) The terms X ~ 2 / a ~ 2 = cos ~ 2θ y ~ 2 / b ~ 2 = sin ~ 2 + y ~ 2 / b ~ 2 = cos ~ (2θ) + sin ~ (2θ) The above equation is the same as 楕 circle mode (center at coordinate origin) A circle.