Reduction of residual stress in porous Ti6Al4V by in situ double scanning during laser additive manu

来源 :矿物冶金与材料学报 | 被引量 : 0次 | 上传用户:hqxx03447
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Selective laser melting (SLM) technology plays an important role in the preparation of porous titanium (Ti) implants with complex structures and precise sizes. Unfortunately, the processing characteristics of this technology, which include rapid melting and solidification, lead to products with high residual stress. Herein, an in situ method was developed to restrain the residual stress and improve the mechanical strength of porous Ti alloys during laser additive manufacturing. In brief, porous Ti6Al4V was prepared by an SLM three-dimensional (3D) printer equipped with a double laser system that could rescan each layer immediately after solidification of the molten powder, thus reducing the temperature gradient and avoiding rapid melting and cooling. Results indicated that double scanning can provide stronger bonding condi-tions for the honeycomb structure and improve the yield strength and elastic modulus of the alloy. Rescanning with an energy density of 75%resulted in 33.5%–38.0% reductions in residual stress. The porosities of double-scanned specimens were 2%–4% lower than those of single-scanned specimens, and the differences noted increased with increasing sheet thickness. The rescanning laser power should be reduced during the preparation of porous Ti with thick cell walls to ensure dimensional accuracy.
其他文献
The silicon-based material exhibits a high theoretical specific capacity and is one of the best anode for the next generation of ad-vanced lithium-ion batteries (LIBs). However, it is difficult for the silicon-based anode to form a stable solid-state inte
Anion-immobilized solid composite electrolytes (SCEs) are important to restrain the propagation of lithium dendrites for all solid-state lithium metal batteries (ASSLMBs). Herein, a novel SCEs based on metal-organic frameworks (MOFs, UiO-66-NH2) and super
An explosion-welded technology was induced to manufacture the GH3535/316H bimetallic plates to provide a more cost-effective structural material for ultrahigh temperature, molten salt thermal storage systems. The microstructure of the bonding interfaces w
Ultrafine nano-scale Cu2Sb alloy confined in a three-dimensional porous carbon was synthesized using NaCl template-assisted va-cuum freeze-drying followed by high-temperature sintering and was evaluated as an anode for sodium-ion batteries (SIBs) and pota
Functionalized ionic liquids (FILs) as extractants were employed for the separation of tungsten and molybdenum from a sulfate solution for the first time. The effects of initial pH, extractant concentration, metal concentrations in the feed were comprehen
In order to study the effect of continuous casting process parameters on the shape of slab solidification end under non-uniform cool-ing, a solidification model of a continuous-cast slab with non-uniform cooling condition was established with ProCAST soft
Hot compression tests were performed on AISI 321 austenitic stainless steel in the deformation temperature range of 800–1200℃ and constant strain rates of 0.001, 0.01, 0.1, and 1 s?1. Hot flow curves were used to determine the strain hardening exponent an
Composite electrodes prepared by cation exchange resins and activated carbon (AC) were used to adsorb V(IV) in capacitive deionization (CDI). The electrode made of middle resin size (D860/AC M) had the largest specific surface area and mesoporous content
Silicon (Si) particles were functionalized using carbon dots (CDs) to enhance the interaction between the Si particles and the binders. First, CDs rich in polar groups were synthesized using a simple hydrothermal method. Then, CDs were loaded on the Si su
Antimony sulfide (Sb2S3) is a promising anode for lithium-ion batteries due to its high capacity and vast reserves. However, the low electronic conductivity and severe volume change during cycling hinder its commercialization. Herein our work, a three-dim