论文部分内容阅读
针对传统独立分量分析(ICA)方法对时变信道跟踪能力较差的问题,提出了一种时变混合共轭梯度盲提取算法。该算法有效利用了各源信号的时序结构差异,仅利用其二阶统计量解决了具有不同功率谱密度的信号的分离,而无须估计信号的概率密度和计算高阶累积量,减少了运算的复杂度并可用于杂系信号混合的盲分离问题;同时,算法利用仅具有一个全局最优解的凸代价函数,采用计算简单并具有较好数值表现的自适应共轭梯度算法进行迭代,获得了更快的收敛速度和更好的稳定性能。仿真结果表明,该算法与传统 ICA 算法相比,具有对时变系统更好的跟踪能