论文部分内容阅读
非负矩阵分解(Nonnegative Matrix Factorization,NMF)是一种新近被提出的方法,它以非线性的方式实现对非负多元数据的纯加性、局部化、线性和低维描述。NMF可使数据中的潜在结构、特征或模式变得清晰,因此它作为一种有效的特征提取手段已被成功应用在许多领域的研究中。但是,NMF的处理对象本质上是向量,用NMF处理数据矩阵集时要先将被处理矩阵集中的矩阵逐一矢量化,这常使对应的学习问题成为典型的小样本问题,从而使NMF结果的描述力不强、推广性差。为克服这两个问题,并保留NMF的