论文部分内容阅读
利用基于粒子群和蚁群算法的智能混合优化策略,删除冗余测试向量以解决测试集的优化问题.利用蚁群算法的并行搜索能力构造初始解集,通过粒子群优化算法将解集维数降低,确定每次迭代的个体最优解和全局最优解,并利用新粒子信息更新信息素,最终通过多次迭代找到一个或多个最优测试集.通过多组数据实例分析可知:该智能混合优化策略与蚁群算法等其他测试集优化算法相比,可得到多个可行性最优测试集;与蚁群算法相比可提高收敛速度,并降低蚁群算法参数选取对收敛结果的影响,从而避免次优解的出现.