【摘 要】
:
目的利用合成孔径雷达(synthetic aperture radar,SAR)图像进行舰船目标检测是实施海洋监视的重要手段。基于深度学习的目标检测模型在自然图像目标检测任务中取得了巨大成功,但由于自然图像与SAR图像的差异,不能将其直接迁移到SAR图像目标检测中。针对SAR图像目标检测实际应用中对速度和精度的需求,借鉴经典的单阶段目标检测模型(single shot detector,SSD)框
【机 构】
:
海军航空大学信息融合研究所,烟台264001北京空间飞行器总体设计部,北京100089;
论文部分内容阅读
目的利用合成孔径雷达(synthetic aperture radar,SAR)图像进行舰船目标检测是实施海洋监视的重要手段。基于深度学习的目标检测模型在自然图像目标检测任务中取得了巨大成功,但由于自然图像与SAR图像的差异,不能将其直接迁移到SAR图像目标检测中。针对SAR图像目标检测实际应用中对速度和精度的需求,借鉴经典的单阶段目标检测模型(single shot detector,SSD)框架,提出一种基于特征优化的轻量化SAR图像舰船目标检测网络。方法改进模型并精简网络结构,提出一种数据驱动
其他文献
目的计盒法是一种计算二值图像分形维数的常用方法,传统方法如BCM(box-counting method)对无旋转的图像结构具有较理想的计算结果,但是对具有旋转的图像结构的拟合结果偏差较大,导致同一物体在不同旋转角度下的图像的计算结果存在较大差异。为了减小图像旋转对盒维数的影响,本文提出了一种计算二值位图分形维数的新方法——旋转骨架法。方法将二值图像提取骨架,使位图转换为矢量图,利用遗传算法计算图
目的视觉里程计(visual odometry,VO)仅需要普通相机即可实现精度可观的自主定位,已经成为计算机视觉和机器人领域的研究热点,但是当前研究及应用大多基于场景为静态的假设,即场景中只有相机运动这一个运动模型,无法处理多个运动模型,因此本文提出一种基于分裂合并运动分割的多运动视觉里程计方法,获得场景中除相机运动外多个运动目标的运动状态。方法基于传统的视觉里程计框架,引入多模型拟合的方法分割
目的超声图像是临床医学中应用最广泛的医学图像之一,但左心室超声图像一般具有强噪声、弱边缘和组织结构复杂等问题,其图像分割难度较大。临床上需要一种效率高、质量好的超声图像左心室分割算法。本文提出一种基于深层聚合残差密集网络(deep layer aggregation for residual dense network,DLA-RDNet)的超声图像左心室分割算法。方法对获取的超声图像进行形态学操
目的青光眼和病理性近视等会对人的视力造成不可逆的损害,早期的眼科疾病诊断能够大大降低发病率。由于眼底图像的复杂性,视盘分割很容易受到血管和病变等区域的影响,导致传统方法不能精确地分割出视盘。针对这一问题,提出了一种基于深度学习的视盘分割方法 RA-UNet(residual attention UNet),提高了视盘分割精度,实现了自动、端到端的分割。方法在原始UNet基础上进行了改进。使用融合注
电-多相催化作用新技术指的是针对某种工业废水,研制出高效的催化剂,在其上施加一定的电压,在常温常压下处理废水,就能达到COD减少,色度降低的效果.该技术能处理废水的范围广
本文研究了meso-(4-磺基苯)卟啉(MnTPS)对HO的电催化还原作用.通过电化学固定化方法制备了聚吡咯/MnTPPS以及聚吡咯/MnTPPS/FeCN膜电极,并分别研究了它们对过氧化氢的电催化
目的分形几何学的理论研究与应用实践方兴未艾,在分形的计算机生成领域,传统方法是在空间域中,通过对生成元的迭代操作而形成。为了扩展分形的生成方法,本文将频谱分析引入到分形几何中。方法正交函数系是频谱分析的核心问题之一。考虑到分形曲线是一类连续而不光滑的折线型信号,通常的三角函数(Fourier变换)、连续小波变换仅适用于光滑的对象,否则会出现所谓"Gibbs现象";另一方面,以V-系统为代表的正交分