论文部分内容阅读
在高中物理的《磁场》、《电磁感应》、《交流电》三章中,围绕有关定律、定理或公式,充分体现了整体与局部的辩证关系。如,法拉第电磁感应定律ε=ΔΦ/Δt,从整体上揭示了回路中感生电动势的大小与回路磁通量变化率的关系。教材在直接给出这个定律后,为了确定回路的一个局部——金属导体棒做切割磁力线运动时感生电动势的大小,便假想了一个整体——闭合回路,分析回路中磁通量的变化率,利用ε=ΔΦ/Δt导出公式ε=BLvsinθ,生动地体现了在一定条件下整体对局部的转化。再如,在形容磁场对通电矩形线圈的作用时,教材利用安培力公式F=ILBsinθ,先确定出线圈各边所受的磁场力及其磁力矩,再导出整个线圈所受磁力矩公式M=BIScosθ。这是局部向整体的过渡。
In the three chapters of “physics”, “electromagnetic induction” and “AC power” of high school physics, around the laws, theorems or formulas, the dialectical relationship between the whole and the local is fully embodied. For example, Faraday’s law of electromagnetic induction, ε=ΔΦ/Δt, reveals the relationship between the magnitude of induced electromotive force in the circuit and the rate of change of magnetic flux in the circuit as a whole. After the textbook gives this law directly, in order to determine a part of the loop--the metal conductor bars do the magnitude of the induced electromotive force when cutting the magnetic field lines, we imaginary a whole--closed loop, analyzing the rate of change of the magnetic flux in the loop, using ε=ΔΦ/Δt derives the formula ε=BLvsinθ, vividly embodies the transformation of the whole to the local under certain conditions. For another example, when describing the effect of a magnetic field on an energized rectangular coil, the textbook uses the formula A of the force formula, F=ILBsinθ, to first determine the magnetic field force and its magnetic moment on each side of the coil, and then derive the formula for the magnetic moment of the entire coil. BIScosθ. This is a partial transition to the whole.