论文部分内容阅读
极大熵聚类算法(MEC)是基于信息论的新型聚类算法。以不同子集之间的协同关系为出发点,与信息理论中的极大熵原理相结合,通过构造新的极大熵目标函数来改变传统聚类算法中对整个数据集直接聚类的机制。提出一种基于协同的极大熵聚类算法CMEC,它不仅具有较MEC算法更高的聚类精度和更好的泛化性等特点,较之协同模糊聚类算法还具有更好的物理意义。实验结果表明所提出的CMEC算法具有上述优点,其聚类效果比传统的聚类算法有了很大的提高。