论文部分内容阅读
聚类分析是一种重要的数据挖掘方法,K-means算法是其中最常用的基于划分的方法。本文提出了一种基于初始均值点离散化的改进K-means算法。改进的算法在选取初始均值点时,尽量使初始均值点的分布离散化,解决了传统算法中随机选取初始均值点所造成的一些问题。同时,为了得到更高质量的聚类结果,本文进行了数据集中的离群点检测和自动确定参数k的最佳取值两方面的前期处理工作。实验证明,改进后的算法明显优于传统算法。