论文部分内容阅读
针对单一视觉信息在动态变化环境下描述目标不够充分、跟踪目标不够稳定的缺点,提出了一种基于粒子滤波框架的新型多特征融合的视觉跟踪算法。采用颜色和形状信息来描述运动模型,通过民主合成策略将两种信息融合在一起,使得跟踪算法能根据当前跟踪形势自适应调整两种信息的权重以期达到最佳的最大似然比,实现信息间的优势互补。在设计粒子滤波跟踪算法时,利用自适应信息融合策略构建似然模型,提高了粒子滤波跟踪算法在复杂场景下的稳健性。实验结果表明,多特征融合跟踪算法不仅能准确、高效地跟踪目标,而且对光照、姿态变化引起的目标表