论文部分内容阅读
研究了一类转移概率部分未知的随机时滞饱和Markov切换系统的镇定问题.首先,构建Lyapunov-Krasovkii方法,设计模态依赖的状态反馈控制器,保证了闭环系统的随机稳定性.其次,将其归结为求解一组线性矩阵不等式(LMIs)的可行性问题,通过求解线性矩阵不等式的方式,获得了均方意义下的最大不变吸引域.最后,数值仿真验证结论的有效性.“,”The paper is concemed with the stabilization for stochastic time-delayed Markov switching systems with partly unknown transition rates and actuator saturation.Firstly,by constructing the Lyapunov-Krasovskii methodology,a mode-dependent state feedback controller is designed to guarantee the stochastic stability of the corresponding closed-loop system.And then,the largest contraction invariant set in the mean square sense is proposed in the framework of linear matrix inequalities (LMIs).Then,linear matrix inequality conditions are established to acquire the largest contraction invariant set.Finally,a numerical example is given to demonstrate the validity of the main results.